NFCR MISSION STATEMENT

The National Foundation for Cancer Research (NFCR) was founded in 1973 to support cancer research and public education relating to prevention, early diagnosis, better treatments and ultimately, a cure for cancer. NFCR promotes and facilitates collaboration among scientists to accelerate the pace of discovery from bench to bedside. NFCR is about Research for a Cure — cures for all types of cancer.

TABLE OF CONTENTS

Letter from the Chief Executive Officer ... 1
T-Cell Army ... 2
Targeting Cancer: Research Highlights ... 4
International Collaboration Drives Discovery 12
2014 Szent-Györgyi Prize ... 14
2014 Fundraising Events ... 16
Play4TheCure ... 18
Extraordinary Support ... 20
Dear Friends and Donors,

For 42 years, the National Foundation for Cancer Research has funded scientific discoveries, medical advancements, and changes in technology that have revolutionized the way doctors treat cancer — all types of cancer. NFCR has long been a catalyst for the invention of the kinds of “disruptive innovations” that are bringing hope and promise to patients suffering with cancer.

Innovation is deeply embedded in all that we do. Our focus has always been to provide scientists the “adventure” funding to discover, and then to incubate their novel ideas, programs, products, or practices in support of research that will cure cancer. Since our founding by Nobel Laureate Dr. Albert Szent-Györgyi, NFCR has stood apart by supporting the High-Risk/High-Reward cancer research that larger charities and governments can’t and won’t fund.

But research is about more than just funding discoveries. There is a deafening silence about available cancer treatments today which needs to be addressed if we hope to translate the breakthroughs in research to patients at their bedsides.

NFCR is dedicated to shortening the time between a laboratory discovery and a new treatment option becoming available to patients. The new breakthroughs and technologies our supported-scientists and international partners are working on are made possible by your generous support.

As you will see in detail in the following pages, NFCR supported-scientists are literally defining the forefront of cancer research. They are pioneering new approaches to immunotherapy, harnessing the immune system to fight cancer. They are also integrating molecular-based diagnostics with medical informatics to identify molecular targets in individual patients that might rapidly be translated into precision medicine strategies. This is Research for a Cure.

Thank you and sincerely,

[Signature]

Franklin C. Salisbury, Jr.
Chief Executive Officer
Sitting in his Houston, Texas laboratory, Laurence Cooper, M.D., Ph.D., is determined. “We’ve got to do better,” he says. As a pediatric oncologist at MD Anderson Cancer Center, Dr. Cooper knows the cost of cancer first-hand. Despite great advances in the fight against childhood cancers, current treatments have reached the point of diminishing returns.

As a cancer researcher, however, Dr. Cooper also knows that the groundbreaking new treatments his patients desperately need will be found in the laboratory. NFCR shares this vision, and we have proudly supported Dr. Cooper’s research efforts for over a decade. Today, thanks to his tireless work, a breakthrough new treatment called adoptive immunotherapy is now poised to reach patients across the country.
There are many different approaches to “immunotherapy,” which refers to any treatment that harnesses the power of the immune system to fight cancer. Most approaches involve T-cells, an especially attractive part of the immune system for cancer research, for three reasons. First, T-cells are specific, which means they can recognize very subtle differences between normal and abnormal cells. Second, T-cells have memory, so that once they recognize a harmful molecular signature – whether due to a virus or to cancer – they can protect against recurrence for life. Third, T-cells are incredibly adaptable. Cancer researchers have long known that tumor cells can evolve resistance to drugs over time; unlike drugs, T-cells are able to evolve alongside the cancer and remain effective.

For decades, scientists have been trying to mobilize T-cells to identify and attack cancer cells. Through an ingenious process of genetic engineering, Dr. Cooper has now achieved remarkable success.

ASSEMBLING THE ARMY

When President Nixon declared “War on Cancer” in 1971, he was not referring to any specific treatment. However, Dr. Cooper believes it’s an apt analogy for his approach to immunotherapy. “We do think of it as sort of a war metaphor,” he says. “The T-cells can be thought of as foot soldiers, where they can be assembled outside of the body, just like a general would assemble an army.”

Next the T-cells are “trained” to distinguish friend from foe – that is, to recognize tumor cells as different from normal cells – through a sophisticated process of genetic engineering. Dr. Cooper and his colleagues construct synthetic genes in the laboratory, which they insert into the genome of the assembled T-cells. These synthetic genes are designed to make the T-cells build special molecules, called chimeric antigen receptors (CARs), which act as “homing antennas” to direct the T-cells’ killing abilities towards specific, pre-selected targets.

Now fully equipped to mount an attack against the cancer cells, the T-cells can be packaged, put into a bottle, and ultimately “deployed” back into the cancer patient’s bloodstream. Importantly, Dr. Cooper’s innovative genetic engineering approach also reduces the need to “match” donors with patients, allowing the T-cells prepared from a single, unrelated, healthy donor to be produced in bulk. These genetically engineered T-cells can be assembled and frozen in large quantities, like a “standing army reserve,” then thawed and infused on demand when the patient needs them.

This revolutionary process, known as adoptive immunotherapy, is the culmination of years of work by Dr. Cooper, with support from NFCR.

FINDING THE FOES

Just as a good general trains an army to face the specific battles ahead, Dr. Cooper’s pioneering approach can produce T-cells that are tailored to fight different types of cancer.

The first great success came with the engineering of CARs that enabled the T-cells to recognize a molecule called CD19, which is found on tumor cells from several types of leukemia and lymphoma. Dr. Cooper led the first-in-humans trial to infuse CD19-specific T-cells into patients with malignant B-cell Lymphoma.

Dr. Cooper has also generated CARs that grant T-cells specificity for other cancer molecules, including HERV-K, which is expressed in certain types of breast cancer; CD56, which is expressed in the childhood cancer neuroblastoma; and c-Met, which is expressed in many different cancers, especially when tumors have a poor oxygen supply. As a result of this specificity and adaptability, Dr. Cooper’s adoptive immunotherapy approach has the potential to make an impact across a huge array of cancer types.

Direct assaults on tumor cells are not the only way that Dr. Cooper’s T-cell armies are helping cancer patients. Bone marrow transplant is an important component of therapy for many cancer patients, but during recovery they have dangerously weakened immune systems. This leaves them vulnerable to opportunistic infections, especially caused by Aspergillus, the most common fungal infection in immune-compromised patients. Healthy people breathe in small quantities of this common mold every day without problems, but for bone marrow transplant patients, infection is lethal in over 60% of cases.

Now Dr. Cooper and his team have successfully applied their adoptive immunotherapy technique to killing Aspergillus cells. They have engineered CARs that enable T-cells to recognize a sugar molecule on this fungus. This new approach of targeting sugar molecules could be used to target other dangerous pathogens as well.

WINNING THE WAR

Over the course of his research career, Dr. Cooper has never lost sight of the patients who are depending on him. These patients fuel his drive to “do better,” and not settle for the diminishing returns of conventional therapies. Throughout our long relationship, NFCR has always had the highest confidence in Dr. Cooper’s ability to bridge the gap between what cancer therapy is, and what it needs to be. “I have to think of things that really aren’t available,” says Dr. Cooper, “things that are new and untested. Quite frankly, this is where the NFCR shines, because it’s able essentially to hold that uncertainty.”

Today, thanks to the generous support of NFCR’s donors, what was once an untested idea is now becoming a life-saving reality. Early in 2015, a new company, Ziopharm, was launched to translate Dr. Cooper’s adoptive immunotherapy approach into new treatments for patients in clinics across the U.S. This is an excellent example of NFCR’s unique and successful approach to funding cancer research. By providing long-term support for the most promising science, we ultimately make possible the truly groundbreaking discoveries that will have a huge impact in the lives of cancer patients.

It is because of those patients that Dr. Cooper remains determined. “We’re not going to do something that’s just iterative,” he says; “we’re going to do something that’s transformative. We’re actually going to cure – if I can use big words – we’re going to cure cancer.” That is the mission of NFCR: Research for a Cure.
For more than 40 years, NFCR has provided outstanding researchers with the precious seed funding they need to pursue the next big thing in cancer research. NFCR is committed to fostering scientific creativity, investing in basic research, and helping scientists translate these promising cancer discoveries into cures.

From life-saving breakthroughs in immunotherapy to advances in metastasis research, cancer genetics, precision medicine, anti-angiogenic therapies, nanomedicine and more, NFCR scientists have led the way into a new era of cancer prevention, detection, and treatment.

This is what NFCR means by *Research for a Cure*.
EARLY CANCER DETECTION AND MONITORING

Early detection and monitoring is critical for effective cancer treatments. The molecular differences that make cancer cells lethal also provide the clues for their detection, identification and visualization. Our scientists are developing new methods in molecular imaging technologies which are highly-sensitive cancer detectors. A revolutionary technology recently developed by NFCR-funded researchers makes it possible to detect early-stage cancer through a simple blood test. We envision that the development of these new tools for early cancer detection and continuous monitoring during and after cancer treatment will significantly improve clinical management of various cancers and ultimately, improve patient survival.

CTC CHIP DETECTS CANCER IN BLOOD

Daniel A. Haber, M.D., Ph.D.
Massachusetts General Hospital, Boston, MA
Supported Since: 2004
Principal Cancer Types: Pancreas, Breast, Lung, Melanoma, Prostate
Research Focus: Circulating Tumor Cells

Dr. Haber and his team developed the CTC iChip — an advanced micro-engineered device that is capable of capturing extremely rare circulating tumor cells (CTCs) from the blood. This device could dramatically improve treatment and diagnosis of many different types of metastatic cancer. Thanks to recent improvements in design, Dr. Haber is now able to use the CTC iChip to investigate the ways in which cancer cells leave the primary tumor and invade into the bloodstream to spread and initiate metastasis. By testing the CTCs, they have discovered that some genes are specifically activated as cancer cells leave the tumor and enter blood circulation. He and his team are now working to understand the properties of these genes to better understand how cancer cells spread through the blood, and whether targeting these genes could prevent metastasis.

DETECTING OVARIAN CANCER

Robert C. Bast, Jr., M.D.
MD Anderson Cancer Center, Houston, TX
Supported Since: 2001
Principal Cancer Type: Ovarian
Research Focus: Early Detection of Ovarian Cancer

When it comes to ovarian cancer, early detection is viewed as the most effective means to achieve cure. The five-year survival rate is above 90% if ovarian cancer is found during the earliest stage; unfortunately, only 15% of cases are diagnosed at this stage. Dr. Bast is working to change that. Using a special imaging device called a Superconducting Quantum Interfering Device (SQUID), which promises to improve sensitivity by several orders of magnitude over existing techniques, Dr. Bast and his colleagues are working to identify the best combination of biomarkers that can be used together to produce the most sensitive, ovarian-cancer-identifying signal possible. Using more specific and sensitive biomarkers in conjunction with SQUID technology could greatly increase early detection and diagnosis of ovarian tumors at a time that would offer the best opportunity for cure.
ADVANCING PERSONALIZED MEDICINE THROUGH ANALYSIS OF CANCER PATHWAYS AND DRUG RESISTANCE

What makes cancer cells different and dangerous? Among the myriad genetic alterations observed in tumors, only some propel cancer cells to proliferate abnormally, survive inappropriately and resist the drugs administered to destroy them. Furthermore, every cancer is different as multiple pathways can lead to the lethal growth of cancer. To know which alterations represent important therapeutic targets, we need to understand their place in the vast molecular network that underpins cellular function. We are using multiple genomic, proteomic, computational, and *in vivo* approaches to build a comprehensive “wiring diagram” for cancer cells and their molecular environment. This blueprint will lead us to better, more sophisticated strategies to control individual cancers and combat drug resistance.

TARGETING GliOBLASTOMA

Dr. Cavenee is a renowned leader in identifying the genetic underpinnings of glioblastoma multiforme (GBM) — the most common and deadliest form of brain tumor — and creating innovative therapeutic approaches against this disease. He and his team are especially interested in understanding how GBM tumors become resistant to treatment. To date, the specific reasons that GBM develops resistance to new treatments (including a class of drugs called EGFR inhibitors) remain largely undefined. Dr. Cavenee’s idea is that understanding this process will allow them to devise a way to block all of the resistance “escape pathways” using targeted therapies — an approach they believe will eventually lead to longer survival times for patients.

W. K. Alfred Yung, Ph.D.
MD Anderson Cancer Center, Houston, TX
Supported Since: 2014
Principal Cancer Types: Brain
Research Focus: Overcoming Resistance in GBM

In his first year of NFCR support, Dr. Yung is advancing the search for new treatments for glioblastoma multiforme (GBM) — the most common and deadliest brain tumor in adults. He is especially focused on drugs which target a gene called PI3K, a key driver for about 30% of GBM cases. Dr. Yung’s team is working with a special panel of glioma stem cells (GSCs) collected from many different GBM patients, which allows them to investigate patterns of resistance to PI3K inhibitors. By establishing the molecular profile of each line of GSCs, Dr. Yung and his team can identify potential targets for new drugs in the laboratory, validate which targets are viable for treatment, and ultimately develop drugs that are specifically tailored to attack those targets.
STOPPING METASTASIS

Danny Welch, Ph.D.
NFCR Center for Metastasis Research
The University of Kansas Cancer Center,
Kansas City, KS
Supported Since: 1996
Principal Cancer Types: Breast, Colorectal,
Lung, Ovarian, Pancreas, Prostate,
Melanoma
Research Focus: Metastasis Suppressor Genes

Since its inception, Dr. Welch has directed the NFCR Center for Metastasis Research in its investigations of cancer biology related to metastasis — the process responsible for the vast majority of patient deaths across all types of cancer. Dr. Welch and his team have identified genes regulating metastasis, particularly metastasis suppressors; investigated the interactions between metastases and their surrounding tissues, especially for bone metastases; and are now working to translate their findings into clinical practice. In 2014, they identified genetic changes that predict whether patients will or will not develop metastasis. At least some of these changes occur in mitochondria — where cells convert nutrients into energy. These results could mean that a simple blood draw and analysis of mitochondrial DNA, which is present in every cell and which is small enough to be rapidly analyzed, could be used to help doctors guide their strategy to treat patients.

BIOMARKERS AND NEW THERAPEUTIC TARGETS

Wei Zhang, Ph.D.
NFCR Center for Cancer Systems Informatics
MD Anderson Cancer Center,
Houston, TX
Supported Since: 2006
Principal Cancer Types: Gastric, Ovarian,
Uterine, Colorectal, Breast, Brain
Research Focus: Cancer Genetics and Personalized Medicine

Personalized medicine — choosing anti-cancer treatments for specific patients based on the genetic makeup of their own, unique tumors — has been the dream of oncologists for decades. However, efficiently analyzing enormous genomic datasets to make treatment recommendations is no easy feat. Dr. Zhang and his team at the NFCR Center for Cancer Systems Informatics have the tools and the drive to make that dream a reality. With key publications in 2014 detailing discoveries in genomic and genetic makeup of ovarian and uterine cancer, plus their critical role in the international effort to map the genetic signatures of gastric cancer (page 13), investigators at the Center have accelerated the pace of research into this critical area, making invaluable contributions to our understanding of the molecular and genomic events that underlie many cancer types, and ultimately improving patient care.

ANTI-CANCER DRUG DESIGN AND DISCOVERY

Alanna Schepartz, Ph.D.
Yale University, New Haven, CT
Supported Since: 1991
Principal Cancer Types: Lung, Colorectal,
Head and Neck, Pancreas
Research Focus: Protein-Protein Interactions

Dr. Schepartz is pioneering a new approach to cancer treatment, which focuses on how to attack “protein-protein interactions” — one of the most challenging aspects of new drug development. In her laboratory, Dr. Schepartz and her team are synthesizing a new class of molecules called “miniature proteins” which they are using to identify the functional role of discrete protein-protein interactions that are critical for cancer. They are also developing beta-peptides — another class of synthetic molecule — that are able to block these interactions. In 2014, Dr. Schepartz described new molecules that inhibit EGFR — an important protein that is often mutated in lung cancer — in a new way, offering hope to patients whose cancer is resistant to current anti-EGFR treatments.

Dr. Sartorelli has been working for years to turn the tables on cancer, with an approach that converts the disease’s apparent strength into a fatal weakness. Cancer often results when cells develop defects in their ability to repair damage to their DNA. This causes the cells to acquire even more mutations, which can ultimately lead to cancer. Dr. Sartorelli’s team continues to work on identifying the specific flaws in DNA repair machinery in cancer cells, then attacking those cells with novel agents and/or chemotherapy that maximizes the specific type of DNA damage that they are unable to repair. Triapine, a novel agent of this type that was developed in Dr. Sartorelli’s lab, is expected to enter clinical trials for the treatment of cervical and ovarian cancers in 2015. These approaches are also anticipated to have high relevance to the treatment of breast cancer, glioblastoma, and leukemia.

Alan C. Sartorelli, Ph.D.
(1931–2015)
Yale University School of Medicine,
New Haven, CT
Supported Since: 2004
Principal Cancer Types: Cervical, Ovarian,
Breast, Brain, Leukemia
Research Focus: New Drug Development
A world-renowned biochemist, Dr. Schimmel has dedicated his 40-year career to understanding the most fundamental chemical process for all living things — how the genetic information encoded in RNA gets translated into protein. His work has led to the discovery of a major new way to relieve the adverse effects of cancer drugs that can harm other parts of the body, especially the blood supply. One key protein Dr. Schimmel has been investigating was found to restore platelet counts, offering hope for cancer patients with thrombocytopenia. In addition, Dr. Schimmel and his team discovered how a natural ingredient in the food chain (resveratrol, found in cacao and grape skins) works with another key protein to produce protective effects against cancer — a true breakthrough for cancer prevention. The mechanism could also be exploited to develop new treatments or chemoprevention agents.

At the NFCR Center for Targeted Cancer Therapies, Co-Directors Dr. Von Hoff and Dr. Hurley are pioneering new approaches to attack the so-called “undruggable” targets present in many tumors. They have had great success identifying multiple new compounds that selectively kill pancreatic cancer cells with mutations in the K-ras gene, and the leading compounds are currently being further developed for possible translation into the clinic. In addition to this, the Center is embarking on an entirely new approach to treating cancer in 2015, developing drugs that block newly-recognized genetic structures called “super enhancers.” These large clusters of DNA regulatory elements, which control expression of a host of genes — including the critical cancer gene c-Myc — offer a great opportunity to disrupt the network of genes-associated cancer. This new approach may lead to great improvements in the treatment of pancreatic cancer, lymphoma, multiple myeloma, and colorectal cancer, and other cancers.

Dr. Hong was instrumental in the design and implementation of the Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) program, which was funded in part by NFCR. The BATTLE trial’s adaptive design, in which lung cancer patients were assigned to be treated with the drug to which they are most likely to respond, based on their personal biomarker profile identified through tumor biopsies, was groundbreaking in its large-scale application of precision medicine techniques. Today, the BATTLE trial serves as a model for personalized treatment initiatives that are at the forefront of cancer research. Dr. Hong’s work continues to pay dividends, as the trial’s findings are applied in the clinic for lung patients with non-small cell lung cancer.

PERSONALIZED APPROACH FOR MORE EFFECTIVE TREATMENT

Kathryn B. Horwitz, Ph.D.
University of Colorado,
Denver, CO
Supported Since: 1985
Principal Cancer Type: Breast
Research Focus: Combination Therapy for Breast Cancer

A surprising number of ER+PR+ breast cancer patients — those whose cancers are positive for estrogen and progesterone receptors — are resistant to hormone therapy, and 30% or more see their tumor return after being “cancer-free” for years, even decades, following anti-hormone and chemotherapy treatments. Dr. Horwitz is working to understand why. Her research has found that luminal breast tumors, which account for 75% of all breast tumors, actually contain four different types of cancer cells, some of which are resistant to hormone therapy — as though the patient had four different kinds of breast cancer at once. Her team is working to isolate each of these four cell types, then find drugs that can attack each one, in hopes that combination therapy will prove to be a better long-term approach to treatment.

Waun Ki Hong, M.D.
MD Anderson Cancer Center,
Houston, TX
Supported Since: 1999
Principal Cancer Type: Lung
Research Focus: Adaptive Clinical Trials
NGIOGENESIS: SHUTTING DOWN CANCER

Harold F. Dvorak, M.D.
Beth Israel Deaconess Medical Center,
Boston, MA
Supported Since: 1980
Principal Cancer Types: All Types
(tumor blood supply)
Research Focus: Tumor Angiogenesis and Anti-vascular Therapy

Dr. Dvorak is a long-time NFCR Fellow, and winner of the inaugural Albert Szent-Györgyi Prize for his discovery of VEGF (vascular endothelial growth factor). VEGF plays a central role in angiogenesis, the process by which tumors recruit blood vessels to supply the nutrients they need to grow and survive. Dr. Dvorak’s research has contributed immensely to scientists’ understanding of this process, and led to the development of a new class of anti-angiogenic therapies that target tumor blood vessels. His latest work is focused on “feeding arteries” and “draining veins” — the larger vessels that carry blood into and out tumors — with the goal of determining how they form and whether they can be targeted to cut off the tumor blood supply. This novel approach, which is analogous to cutting off the water supply at the street, rather than turning off all the faucets in the house, has great potential for treating and possibly curing many types of cancer.

Rakesh K. Jain, Ph.D.
Massachusetts General Hospital,
Boston, MA
Supported Since: 1998
Principal Cancer Types: Brain, All Types
(tumor blood supply)
Research Focus: Attacking Brain Tumor Blood Vessels

Dr. Jain is a leader in the field of anti-angiogenic therapy. His seminal research demonstrated that anti-angiogenic therapy works by normalizing the abnormal, leaky vessels that usually surround and penetrate tumors — a process that both improves delivery of chemotherapy drugs and increases the oxygen content of cancer cells, which makes radiation therapy more effective. Dr. Jain is now focused on the role of angiogenesis in glioblastoma multiforme (GBM). By identifying the characteristics that confer resistance to anti-angiogenic therapy in patients with the disease, Dr. Jain’s research is helping doctors to better tailor the use of anti-angiogenic therapies for GBM patients in the clinic. Additionally, the molecular resistance pathways that Dr. Jain and his team identify will direct the development of novel agents targeting these pathways, which could extend the benefits of anti-angiogenic therapy for patients.

OVERCOMING DRUG RESISTANCE

Susan Band Horwitz, Ph.D.
Albert Einstein College of Medicine,
New York, NY
Supported Since: 2001
Principal Cancer Type: Breast, Ovarian
Research Focus: New Drug Development

Dr. Horwitz is a world-renowned cancer researcher, whose work has been instrumental in the development of a successful class of anti-cancer drugs called Microtubule-Stabilizing Agents (MSAs) — a class that includes Taxol®, Ixempra® and others under development. However, oncologists find it difficult to know if a specific tumor will respond to one of these drugs. Because all cancer drugs have some toxic side effects, physicians only want to expose patients to a drug if it will have positive value. Dr. Horwitz and her team are working to understand the mechanisms of action of drugs affecting the tubulin/microtubule system, and to find biomarkers that will help doctors know which patients will benefit from which drugs. By understanding the mechanisms of cell death, Dr. Horwitz should be better able to select new drugs and design combinations of drugs that will destroy cancer cells.

Alice Shaw, M.D., Ph.D.
Massachusetts General Hospital,
Boston, MA
Supported Since: 2014
Principal Cancer Types: Lung
Research Focus: Overcoming Drug Resistance

Joining NFCR this year with the support of the Hillsberg Lung Cancer Translational Research Grant, Dr. Shaw got right to work, publishing a breakthrough article in the journal *Science* about a new platform she and her team developed to rapidly identify effective drug combinations for lung cancer patients whose tumors have stopped responding to targeted therapy. In their research, cells taken directly from patients’ tumors were grown in the laboratory and treated with a host of different drug combinations to find the ones that work — both attacking the cancer, and cutting off the “escape pathways” that can cause resistance. The approach identified several effective drug combinations — including some that standard testing would not have predicted to work. With further refinements, this strategy might be used to select the optimal treatment for each individual patient, making precision medicine a reality for lung cancer patients — and for other types of cancer as well.
Dr. Jen and her team are developing a platform for rapid selection of personalized treatment options for individual lung cancer patients. In an exciting project supported through the Hillsberg Lung Cancer Translational Research Grant, Dr. Jen is performing advanced genomic analysis on tumor biopsies collected from lung cancer patients whose cancer has recurred, to identify drugs that can target the specific genetic mutations driving the patient's cancer. Meanwhile she has also established tumor models derived from the same patients' biopsies. By integrating the genetic, clinical, and patient-specific tumor model data, Dr. Jen's research will help doctors choose the best possible drug for each specific patient in the project, which will potentially demonstrate the validity of a direct approach to personalized medicine.

INNOVATIVE THERAPIES

Wayne Marasco, M.D., Ph.D.
NFCR Center for Therapeutic Antibody Engineering, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
Supported Since: 1994
Principal Cancer Types: Kidney, Head and Neck, Lung
Research Focus: Monoclonal Antibody Therapy

One promising approach to treating cancer is monoclonal antibody therapy — a type of immunotherapy in which specialized proteins called antibodies attach to specific structures on the surface of cancer cells, then alert the patient's own immune cells to attack the cancer. Designing the antibodies for this type of therapy is a challenging feat of molecular engineering — one ably met by Dr. Marasco and his team at the NFCR Center for Therapeutic Antibody Engineering. Dr. Marasco has had great success developing antibodies that attach to carbonic anhydrase IX (CAIX), an important protein expressed in renal cell carcinoma — the most common type of kidney cancer — and recently reported in cancers of the mouth and lungs as well. For Dr. Marasco, the ultimate goal is always to translate his findings into new drugs for patients, and in 2015 he hopes to move his anti-CAIX antibodies into clinical trials.

Paul B. Fisher, M.Ph., Ph.D.
Virginia Commonwealth University School of Medicine, Richmond, VA
Supported Since: 2008
Principal Cancer Types: Prostate, Pancreas, Metastatic Bone Cancer
Research Focus: Cancer Terminator Viruses

Leukemia is a great success story for cancer research — one in which Dr. Civin played an important role. His early work on bone marrow stem cell transplantation was partially responsible for the dramatic increase in 5-year survival for all types of leukemia over the past 20 years. Unfortunately, acute myeloid leukemia (AML) remains the deadliest form of leukemia. Dr. Civin discovered that artemisinins, a class of drugs used to treat malaria, are also effective at killing AML cancer cells. In 2014, he identified ART-838, a specific artemisinin compound that shows remarkable preliminary effectiveness against leukemia cells, works well in combination with established anti-leukemia drugs, can be given orally and stays active in the bloodstream for a long time, and doesn't appear to harm normal bone marrow cells. ART-838 may prove to be an effective new treatment for AML patients.
CHINESE HERBAL MEDICINE: ADJUVANT TO CHEMO AND RADIATION THERAPY

Yung-Chi Cheng, Ph.D.
Yale University School of Medicine, New Haven, CT
Supported Since: 1991
Principal Cancer Types: Pancreas, Colorectal, Liver, Lung
Research Focus: Traditional Chinese Medicine

While the therapeutic effects of Traditional Chinese Medicine (TCM) have been documented anecdotally for centuries, they have been too often discounted by modern medicine as “alternative therapy” because there was little rigorous scientific proof of their effectiveness. Dr. Cheng’s laboratory is working to bring TCM into the mainstream of western medicine. Their formulation of an ancient Chinese herbal formula, PHY906, is currently being evaluated in two separate Phase 2 clinical trials — as an adjunct to the chemotherapy agent irrinotecan (Camptosar®) for colorectal cancer patients, and in combination with the drug Sorafenib in patients with liver cancer. PHY906 could become one of the first FDA-approved oral herbal medicines for cancer treatment. Dr. Cheng and his team are also evaluating other herbal formulas from TCM, with the hope of developing a new class of anti-cancer drugs.

DEVELOPING NANOTECHNOLOGY-BASED CANCER THERAPIES

Esther H. Chang, Ph.D.
Georgetown University, Washington, D.C.
Supported Since: 1988
Principal Cancer Type: Ovarian, Breast, Brain, and Childhood Cancer
Research Focus: Nanomedicine

Dr. Chang has developed a new platform for treating cancer that is currently being advanced in three separate Phase 2 clinical trials. The platform involves three parts: 1) a nanoscale capsule that can travel through even the tiniest blood vessels, 2) a molecular targeting system that guides the capsule not only to the primary tumor, but to even the smallest metastases, and 3) a “payload” that the capsule delivers to the interior of the cancer cells. That payload can be any kind of anti-cancer agent, from conventional chemotherapy to the latest gene therapies — whatever can be enclosed in the capsule. In these Phase 2 trials, the payload is p53, a critical gene that normal cells have in abundance — making it essentially non-toxic — but which is missing in cancer cells. In Phase 1 trials, restoring p53 proved deadly to cancer cells.

CANCER PREVENTION

Michael B. Sporn, M.D.
Dartmouth Medical School, Hanover, NH
Supported Since: 1999
Principal Cancer Types: Pancreas, Breast, Lung
Research Focus: Chemoprevention of Cancer

The best way to reduce the number of patients dying from cancer is to prevent the disease from developing in the first place. That is the goal of Dr. Sporn, who is establishing new approaches for the prevention and treatment of cancer. His research has led to the development of several synthetic triterpenoid compounds, a new class of chemical agents with potent preventative effects against several types of cancer, including breast, lung, and pancreatic cancer. For individuals who have a family history or are otherwise at high risk to develop these diseases, the promising results of Dr. Sporn’s research offer hope that their chances of developing this devastating cancer may be dramatically reduced by the use of chemoprevention.

Helmut Sies, M.D.
Heinrich-Heine-Universität, Düsseldorf, Germany
Supported Since: 1983
Principal Cancer Types: Colorectal, Skin, Prostate
Research Focus: Nutrition and Cancer Prevention, Implication of Micronutrients

Dr. Sies previously discovered that the antioxidant lycopene, a micronutrient found in tomatoes and other foods, has strong skin cancer prevention effects. Today, his research is focused on selenium (Se), a trace metal found in certain nuts and essential for good health. There is epidemiological evidence that adequate intake of selenium is beneficial for human health and cancer prevention — especially colon cancer — and Dr. Sies is establishing the molecular basis for this effect. Key antioxidant enzymes called selenoproteins require selenium to repair oxidative damage. Dr. Sies discovered that not only are selenoproteins strongly decreased in colon cancer tumor cells, but they are strongly expressed by immune cells in the gut. Moreover, dietary selenium compounds were found to stimulate colon cells to produce selenoproteins, suggesting a potential mechanism for how selenium from ingested food supports immune health and cancer prevention.
In the four decades since NFCR's founding, we have made amazing progress in the fight against cancer, achieving breakthroughs in prevention, early detection, and treatment. Throughout this history there are two things we have learned: 1) Cancer is an incredibly complex disease, and the road to developing cures is long. 2) The journey is much faster and much easier if you aren’t walking the road alone.

Photo: Franklin C. Salisbury, Jr., CEO, and the National Foundation for Cancer Research leadership team with cancer research leaders from United States and China.
When you are working to find a cure for cancer, simply being a brilliant research scientist is not enough. No one working in isolation can hope to unravel the complexities of cancer, much less translate their discoveries into benefits that patients desperately need.

To truly have an impact in the fight against cancer, we need to bring people together. Instead of building barriers to divide researchers, we are focused on building bridges — fostering relationships between scientists around the world and promoting collaborative efforts to fight cancer.

This approach has already produced results with direct impact on the lives of patients with gastric cancer, the fourth most common cancer and the second leading cause of cancer death in the world. In 2013, NFCR launched the new Center for Cancer Systems Informatics at MD Anderson Cancer Center, and last year we reported on their inaugural project: The Geographic Mapping of Gastric Cancer Genomes. In 2014, the project proved a stunning success, providing new genetic insights that could change the way oncologists treat this terrible disease. The results were published in the January 12, 2015 issue of the Proceedings of the National Academy of Science.

This was a truly collaborative research effort, with important contributions from NFCR Fellow Dr. Webster Cavenee, Director of the NFCR Center for Cancer Systems Informatics; Dr. Wei Zhang, and President of the Chinese Anti-Cancer Association and Director of the Tianjin Medical University Cancer Institute; Dr. Xishan Hao; and a team of scientists representing a dozen institutions globally.

Investigators used advanced genome-sequencing technology to analyze hundreds of gastric cancer tissue samples. They discovered that defects in three cellular signaling pathways (BRCA2, Wnt and PI3-K-ERBB4) might influence the response of gastric cancers to therapy.

This is very good news for gastric cancer patients, because a number of newly developed drugs are currently available which target these pathways. These drugs have already been tested in other cancer types, such as breast and ovarian cancers, suggesting that patients with gastric cancer may now be designated for the particular therapy indicated by their genetics. This approach, called “personalized medicine,” could prove to be a major improvement over the current standard treatment for gastric cancer patients, which is essentially “one-size-fits-all.”

The rise of personalized medicine confirms what NFCR has always believed — that the fastest way to end this disease is to research all types of cancer. In the same way that divisions between researchers at different institutions can slow the pace of discovery, when we enforce hard divisions between researchers working on different cancer “types”, we run the risk of missing important areas of overlap.

The success of the gastric cancer genomics project is the culmination of nearly a decade of NFCR support, as it was funded as part of our Tissue Bank Consortium in Asia (TBCA) — a collaborative platform that we established in 2004 to promote and facilitate biospecimen-based international cancer research. TBCA was made possible by grants from several global pharmaceutical companies, specifically in support of international collaboration. It is governed by an International Executive Steering Committee, chaired by NFCR Fellow Dr. Webster Cavenee and composed of leading scientists from top research institutions, cancer hospitals, and industry in the United States and China. It operates in total compliance with the highest international standards for biospecimen collection, storage, and annotation. With TBCA, NFCR has established a new model for public-private partnership and academia-industry collaboration in cancer research across geographic boundaries.

NFCR is poised to continue this tradition of high-impact international collaboration in 2015 as well. In addition to our ongoing efforts against gastric cancer, NFCR has joined with the National Biomarker Development Alliance, the Cure Brain Cancer Foundation, and the National Brain Tumor Society to found The Global Brain Cancer Alliance. Together we have assembled a world-class team to defeat glioblastoma (GBM), the deadliest form of brain cancer. For GBM patients, the need for new treatment options is tremendous. Because no effective long-term therapies are available, 90% of GBM patients survive less than 5 years after diagnosis, and over half of patients survive less than 15 months.

The scale of this global effort to defeat GBM is unprecedented, with over 150 participants from more than 40 leading cancer institutions, including Arizona State University, MD Anderson Cancer Center, Memorial Sloan Kettering, Dana Farber, and the Ludwig Institute. Under the leadership of the Executive Committee, chaired by Dr. Anna Barker and including NFCR President Dr. Sujuan Ba, long-time NFCR researcher Dr. Webster Cavenee, and NFCR Fellow Dr. W.K. Alfred Yung, a revolutionary new framework for GBM clinical trials is emerging. The goal is to allow GBM patients to quickly share in the benefits of more effective therapies, providing new hope where little currently exists.

Cancer knows no boundaries. It strikes people of all ages, from infants to the elderly, making no distinctions for gender, ethnicity, nationality, or religion. Cancer is a global problem, and it requires a global solution. That is why NFCR is committed to a program of international collaboration, in support of our mission: Research for a Cure.
In recognition for his pioneering work in the area of cancer immunotherapy, Dr. James Allison was awarded the 2014 Szent-Györgyi Prize for Progress in Cancer Research. Dr. Allison’s research led to the successful development of “immune checkpoint therapy,” and the first FDA-approved drug for the treatment of metastatic melanoma. The Prize was presented at a ceremony in Washington, D.C., on April 30, 2014, at The National Press Club. U.S. Senator Jerry Moran (R–KS) delivered the keynote address, in which he praised Dr. Allison’s accomplishments and stressed the need for increased funding of scientific research in general and cancer research in particular.
While mainstream cancer research and treatment focused for decades on radiation therapy and chemotherapy, Dr. Allison’s trailblazing work in immunotherapy — working with the body's own immune system to fight off cancer — never ceased. Thanks to his extraordinary leadership, we have entered a new era in the treatment of cancer.

“Dr. Allison’s work has already saved numerous lives and shines a bright light on a future direction of oncology,” said Dr. Alex Matter, CEO of Experimental Therapeutics Centre & D3, A*STAR, Singapore, winner of the 2013 Szent-Györgyi Prize and Chair of this year’s Prize Selection Committee. “He has validated the immunotherapy approach and turned previously widely-held beliefs on their heads with his discoveries. His work is extremely significant and constitutes a turning point in the history of progress in cancer treatments.”

Dr. Allison, along with Dr. Jeff Bluestone, was the first to show that T-cells, the enforcers of the immune system, contain a protein receptor called CTLA-4, which acts as a checkpoint to shut down the immune response. Dr. Allison developed an antibody to block CTLA-4, which he hoped would unleash the immune system to attack cancer. After conducting extensive preclinical work, Dr. Allison showed that blockade of CTLA-4 did indeed lead to rejection of many types of tumors. This research led to the development of a drug called ipilimumab, the first drug to significantly extend survival for patients with late-stage melanoma. The FDA approved ipilimumab for treatment of metastatic melanoma in 2011, and it is now in clinical trials to treat a variety of other cancers.

“I am honored to receive this distinguished award from the National Foundation for Cancer Research for my work in immunology,” said Dr. Allison. “It has been an encouraging journey thus far, and I am humbled to share this prize with the previous winners. The most important reward, however, has been the number of lives being saved using anti-CTLA-4 treatment and the prospect of more to come as checkpoint blockade develops as a major therapeutic approach to cancer.”

“Dr. Allison has revolutionized the way science approaches cancer treatments. He is on the front line in the war against cancer and could not be more deserving of this award,” said Sujuan Ba, Ph.D., Co-chair of the 2014 Szent-Györgyi Prize Selection Committee and Chief Operating Officer of NFCR.

The Szent-Györgyi Prize honors a scientist for a seminal discovery that has resulted in a breakthrough in cancer research. The prize is awarded annually to a scientist, nominated by colleagues or peers, who has contributed outstanding, significant research to the fight against cancer, and whose accomplishments have helped improve treatment options for cancer patients. The prize is named in honor of NFCR co-founder Albert Szent-Györgyi, M.D., Ph.D., who won the Nobel Prize for Science and Medicine in 1937 for his discovery of Vitamin C.

ABOUT JAMES ALLISON, PH.D.

Dr. James Allison is currently the Chairman of the Immunology Department and executive director of the immunotherapy platform for the Moon Shots Program at UT MD Anderson Cancer Center in Houston. From 2004 to 2012, he served as Chairman of the Immunology Program and other distinguished positions at Memorial Sloan Kettering Cancer Center in New York. Prior to 2004, Dr. Allison was on the faculty of the University of California, Berkeley; Stanford University; and the University of Texas MD Anderson Cancer Center. He earned his Ph.D. in biological sciences from the University of Texas at Austin.

Dr. Allison is a member of the National Academy of Sciences, the Institute of Medicine of the National Academies, and a Howard Hughes Medical Institute alumnus. He has won numerous honors for biomedical research including the inaugural AACR-CRI Lloyd J. Old Award in Cancer Immunology, The Economist’s 2013 Innovations Award for Bioscience, and a 2014 Breakthrough Prize in Life Sciences. He co-leads a Stand Up to Cancer Dream Team research project in immunotherapy.
Donor-initiated and corporate-sponsored special events are great ways to show support for cancer research and turn a passion to cure this disease into action. These events and programs help raise funds and awareness while also serving as a catalyst for many supporters of cancer research and prevention education to collaborate, expand their knowledge, and increase their commitment to helping NFCR find cures for all types of cancer.

Gabrielle Lucchese participates in the balloon release at the 7th Annual Party4Life on August 2, 2014.
The Lucy Fund

The Lucy Fund is dedicated to raising funds to support metastatic cancer research. In 2014, The Lucy Fund committee, along with the help of generous sponsors and many hard-working volunteers, hosted several events to raise awareness and funds to support metastatic cancer research.

The Lucy Fund held the 7th Annual Party4Life event in Brodheadsville, Pennsylvania. They also hosted the 2nd annual Party4Life event at Susquehanna University and an inaugural event at Misericordia University. The 2nd Annual Lucy Fund 5k took place in Cape Elizabeth, Maine. The inaugural Battle on Broad dance crew competition took place in December at Temple University. All events offered memorable ways to honor cancer survivors, give encouragement to those currently battling cancer, and remember those who have been lost.

The Lucy fund has raised over $260,000 since its inception to support Dr. Danny Welch at the NFCR Center for Metastasis Research. Dr. Welch and his team have discovered six genes that suppress the spread of cancer. Right now, they are working on understanding the mechanism that governs how these genes work and more importantly, considering ways that these discoveries can be rapidly translated into new targeted therapies for patients whose cancer has spread.

Daffodils and Diamonds

The 33rd Annual Daffodils and Diamonds Luncheon and Fashion Show took place on March 13, 2014, at Columbia Country Club in Chevy Chase, Maryland. The event has become a spring ritual, drawing hundreds of dedicated Washingtonian women each year. To date, it has raised over $800,000 to support NFCR breast and ovarian cancer research programs. “This longstanding annual event is unique because it is held by women for women,” said Lynn Novelli, Event Chair of the luncheon. “NFCR is making great strides in the field of cancer research, and this event gives us the opportunity to pour more resources into the cancers that specifically affect women.”

This year’s event was emceed by Alison Starling, WJLA TV ABC 7 News Anchor, with fashion show presented by Polly Sturm featuring fashions from ET CETERA Designer Separates Spring–Summer 2014 Collection. “The commitment of the volunteers and the generosity of our community made this event very successful, and we are proud to have been a part of it,” said Polly Sturm, Committee Member.

The program also included a champagne reception and the presentation of several live and silent auction items, including a one-week stay in Copper Mountain, Colorado, a Judith Ripka White Sapphire Pendant and a beautiful Tory Burch bag.

Golf and Tennis Classic

The Annual Golf and Tennis Classic was held at Bethesda Country Club in Bethesda, Maryland on Monday, September 22, 2014. This was the 11th year for the Golf Classic and the inaugural year for the Tennis Classic. The event brought golfers and tennis players from across the country together for a terrific day on the course and courts to support a great cause.

The event raised over $60,000 to support NFCR’s life-saving cancer research programs. This year’s event was sponsored by The Calmark Group with other significant sponsorships from Sports Chevrolet, Hendall Inc., PhRMA, Atlas Wood Floors, Inc., Enterprise Holdings, The US Oncology Network, iCore Networks, Inc., Copilevitz & Canter, LLC, QGA Public Affairs, Sage Title Group, WJE, and Long and Foster, Inc.

“We are so grateful to our sponsors, and for the volunteers who donated their time and energy to organize this event,” said Tracy Tkac, Event Chair of the Golf and Tennis Classic. “We couldn’t have done it without them, and as a result of their contributions we were able to raise thousands of dollars to support NFCR’s innovative cancer research.”
2014 saw the continued growth of NFCR’s Play4TheCure sports fundraising program. Over 600 teams in 35 states answered the question, “Who Do You Play4?” Play4TheCure continues to inspire young athletes and their teams to use their passion for sports to “Play4” loved ones affected by cancer. NFCR encourages them to actively participate to fund cancer research and make a difference. The program has received support from a broad range of athletes, including youth recreation leagues, club teams, and high school and college teams across the country.

Photo: Grosse Pointe South. They hosted a Play4TheCure game on September 16, 2014 in Grosse Pointe, MI.
One major achievement in 2014 was that NFCR was named the official charity of the National Field Hockey Coaches Association (NFHCA). This partnership solidified Play4TheCure as part of the fabric of the field hockey community. “The NFHCA is excited to partner with Play4TheCure to provide our members with the resources they need to motivate their communities to fundraise for cancer research. Teams have an opportunity to be a part of the impressive Play4TheCure brand, which goes beyond sports and shows our coaches and their players the power of giving back,” said Andy Whitcomb, President of NFHCA.

NFCR also named Tina Reichprecht as an official advisor to the Play4TheCure program. Among her many notable achievements, Tina is the founder of Play4TheCure and the Mystix Field Hockey Club, and Board member of USA Field Hockey. NFCR is grateful for her passionate efforts to grow Play4TheCure. NFCR is also grateful to all the corporate supporters of Play4TheCure, especially Longstreth Sporting Goods for their continued generosity.

Play4TheCure continued to expand beyond field hockey with the addition of more games in soccer, lacrosse, and softball. We are proud of long-time member of the NFCR Board of Directors, Mark R. Baran, who organized his own personal Play4TheCure event. He joined other endurance swimmers in a two-mile open water race at Sunset Lake in Wildwood Crest, N.J., raising over $9,000.

NFCR is excited about 2015, as more and more teams join the fight against cancer. We are honored to have such a loyal and committed group of coaches, players, and families who support NFCR through their dedication. “Having these girls a part of NFCR’s Play4TheCure means so much to all of us,” said Mo Minicus, head field hockey coach at Darien (CT) High School. “It’s inspiring to hear the athletes tell us who they Play4, such as “my mom’s a cancer survivor and I Play4TheCure”. Every fundraiser makes a difference to help in the fight against cancer and NFCR looks forward to seeing even more participants as the program grows.
EXTRAORDINARY SUPPORT

2014 was distinguished by the extraordinary breadth and depth of support for NFCR. An unprecedented number of donors, corporations, foundations and institutions made gifts totaling $15,350,000. We are deeply grateful to all of our donors for their generosity and confidence in our vision of Research for a Cure. Every gift, large and small, is an investment in new and better ways to prevent, diagnose and treat cancer. NFCR is about cancer research, for research will cure cancer.

On these pages, we are pleased to recognize those donors, corporations, foundations and institutions who made significant gifts to the National Foundation for Cancer Research in 2014.

Includes all donors, foundations, corporations and institutions giving $500 or more between January 1, 2014 and December 31, 2014.

198 Anonymous
Patricia Abbott
Mr. James J. Abel
Mrs. Elizabeth C. Abell
Mr. David W. Abercrombie
Mrs. Mary R. Able
Mr. & Mrs. Eugene V. Abraham
Ms. Maria Abusleme
Acton Boxborough High School
Mr. Clyde M. Adkins
Aetna Foundation, Inc.
Mr. Farhan Ahmad
University of Albany
Albemarle High School
Albert Einstein College of Medicine
Mr. Sergio Aldana
Amira Aldashii
Mr. & Mrs. Bruce Alderton
Mr. Mir Ali
Allegheny College
Fred & Lynda Allen
Mr. & Mrs. Mark Allen
Mr. Gerald J. Allen, Sr.
Rafael Alvarez
Ms. Gwen M. Amazaki
Michael & Laurie Ambrose
American Foundation
American Express Foundation
Mr. John Amos
Mr. Robert Ander
Mr. Benjamin Anderson
Mary R. Anderson-Rowland, Ph.D.
Mr. Ray A. Angeli
Mr. Georges Argoud
Mr. Eugene Ash
AT&T
Shirley Akinison
Atlas Wood Floors, Inc.
ATyR Pharma, Inc.
Mr. Curt Augustine
Mary & H. Mattson Austin
Aron Grove High School
Aron High School
Mr. Louis Arrami
Sujana Ba, Ph.D.
Mr. Luis Bacardi
Davina & Rita Baden
Ms. Priscilla R. Baker
Mrs. Shirley C. Balch
Bancroft School
Bank of America Foundation
Mark & Xiaolei Baran, M.D.
John Y. Barbee
Mr. Harold S. Barker, Jr.
Mr. & Mrs. Robert M. Barlow
Ms. Judy Barnhard
Gino & Christine Barra
Mr. Michael Bartman
Dr. & Mrs. Robert C. Bast, Jr.
Mr. Earl S. Bates
Battelle Memorial Institute
Alvin H. Baum Family Fund
P. Baynham
Bayport-Blue Point High School
Mrs. Rosalind Bay
BD (Becton Dickinson & Co)
Mr. Thomas Rechler
Mr. & Mrs. Mike Becker
Mr. James D. Beckett
Ms. Mary Ruth Bedford
Mr. & Mrs. Thomas Belcher
David Bell
Mr. Rodney Bell
Mrs. Joan S. Bellinger
Belmont Aesthetic & Reconstructive Plastic Surgery
The Beltman-Miller Foundation
Ms. Elissa L. Benchimol
The Frances & Benjamin Benenson Foundation
Mr. Thomas C. Benet
Benevity Community Impact Fund
Denise Bennett
Mr. Robert J. Bennett
Bentley University
Anice W. Benton
Ms. Kerrie Benvenuti
James & Joan Berkowitz
Mr. Donald S. Berlin
Michael & Wilma Bernal
Ms. Margaret S. Bernheim
Mr. Saturnino Betancourt
Bethlehem Central School
BGI - NFCR Gastric Cancer Project
Anthony & Alice-Anne Birch
Bishop Fenwick High School
Mr. William V. Black
Ms. Claire Blewes
Mr. Raymond Blessman
Thomas G. Bizil & Denise M. Bizil Family Foundation
Mr. Jules R. Block
Mrs. Stacy Blumenthal
BMI-Rupp Foundation
Mr. & Mrs. Andrew Bobetsky
Mr. Robert Bobonick
Mr. Allan G. Bogue
Mr. John M. Boguslawski
Mr. Louis J. Bonacci
Bond Beebe
Bongal Field Hockey Booster Club
Ms. Linda L. Bonelli
Boonton High School
Mr. Robert E. Bordner
Bovine Drive, Inc.
Mr. Edward Bowen
Mr. Stephen S. Bowen
Mr. Robert G. Bragg
Mr. Jacques Bramhall
Lloyd B. Braumun
Mrs. Louise A. Breber
Daniel & Courtney Brennan
Mary Brian
Bridgewater College
Brighton High School
Bristol-Myers Squibb Company
Bristol-Myers Squibb Foundation, Inc.
Mr. Bobbie O. Britton
Brownsville
Mr. Eric M. Brown
Trust of Frances M. Brown
Jean B. Brown
Mr. & Mrs. Kingman Brown
Linda & Mark Brown
Morris L. Brown
Roland C. Brown
Brown University Field Hockey
Ms. Louisa Brownell
Pierce Brownell
BT Americas, Inc. (British Telecom)
Bucknell University
Mr. Charles Budd
Mr. John Buddig
Mr. Brian Budovsky
Mr. Justin Baginski
Ms. Lisa Bulger
Mr. & Mrs. James Bert Bunnell
Ms. Janice Burge
Mr. Jack W. Burkat
Ms. Shannon Burke
Burlington Township Field Hockey
Delores J. Burris
Mr. Gary Busby
Ms. Velma Butler
Ms. Barbara J. Byrd
Mr. & Mrs. Larry R. Byrd
The Jack and Dorothy Byrne Foundation
Cail Family Foundation
The Calmark Group, LLC
Camen Hills Regional High School
Elizabeth Cameron
Canton High School
Alfredo and Ada Capitani Family Foundation
Beverly Carasali
Mr. Chris M. Caratan
Robert Carboni
Mr. Blake M. Carlson
Ms. Geraldine Carmack
Mr. Emory Carney
Jane F. Carson
Ms. Roseanne Carter
Mr. & Mrs. Louis B. Carvey
Cary Academy
Mr. Royce B. Casey
Mr. & Mrs. Mike Cash
Ms. Nancy A. Casson
Mr. & Mrs. Avery W. Catlin
Jane & Zack Catterton
Cecil White Operating
Mr. & Mrs. Avery W. Catlin
Curtis & Claver, Inc.
Davis & Leslie, Inc.
David & Donna Challancin
Centreville High School
Dr. & Mrs. Robert C. Bast, Jr.
Mr. Earl S. Bates
Battelle Memorial Institute
Alvin H. Baum Family Fund
P. Baynham
Mr. & Mrs. Ben F. Cheek, III
Ho Chen Family Foundation
Yung-Chi & Elaine Cheng
Cherokee High School
Cheshire Academy
Ms. Grace C. Chien
Charlotte T. Child
Chinese Biopharmaceutical-Association
William & Theresa Chipman
Kenneth Choi
David Chou & Mei Sung
Chung Chow
Mr. Clinton Chow
Christ Church Baptist Church
Bob & Gloria Christopher
Chua Family Charitable Foundation
Mr. Cono Cimino
Mr. Claudio Cipeda
Larry Clark
Mr. Michael Clark
Mr. & Mrs. Jack Crennagh
Mr. Patricia Crennagh
Shirley M. Clermont
Sarah K. Cleveland
Coal Creek Canyon Catholic Community
Mr. Michael T. Cobler
Ms. Janine Cooke
Cold Spring Harbor High School
Mr. Thomas M. Colella
Mr. David P. Coley
Drs. Tom & Emily Collins
Colonial Forge High School
Judith Colton
Estate of Sonya Combs
Community Foundation of Tampa Bay
Mr. Mr. Cono Cimino
Confraternity of Our Lady of Grace
Christopher & Karin Conklin
Connetquot High School
Conrad Weiser High School
Ms. Carol L. Cook
Ms. Carolyn K. Cook
Ms. Judith Cook
Wayne A. Cook
Ms. Bonnie W. Coon
Ms. Lillian J. Cooper
Copleyville & Carter, Inc.
Col. W. W. Corbett
Council Rock High School North
Donald & Anita Cowan
Mr. & Mrs. Edward Cowell
Mrs. Victoria W. Crawford
Mrs. Gertrude S. Crettenen
Mr. Gerald P. Crohn
Mr. John E. Culkin
Cumi Curtis
Mr. & Mrs. Daniel D. Cutler
Ms. Kathleen A. Cyr
Ms. Cathie Dahar
Mr. David Dahl
Ms. Joyce E. Dakis
Ms. Susan Dalgaard
Mr. John Damen

Includes all donors, foundations, corporations and institutions giving $500 or more between January 1, 2014 and December 31, 2014.
Includes all donors, foundations, corporations and institutions giving $500 or more between January 1, 2014 and December 31, 2014.
Includes all donors, foundations, corporations and institutions giving $500 or more between January 1, 2014 and December 31, 2014.

Ms. Maria T. Pessano
Ms. Gail M. Peterson
Mr. Robert K. M. Peterson
Im Petr
Mr. & Mrs. James M. Pfost
Mr. Gary Phillips
Mr. Harry H. Phillips
Phoenixville Area High School
PhRMA
Mrs. Linda J. Pierret
William & Sonia Pindyler Family Foundation
Estate of Arlin G. Piper
Estate of Kimberly Ann Pisarra
LT. Col & Mrs. Joseph T. Piscotta, Ret.
Plymouth Whitemarsh High School
Ms. Iris Podolsky
Mr. Anthony Pogodzinski
Paul & Julie Polkony
Mr. William G. Pollard
Ms. & Mrs. Craig Pollen
Ms. Laurie Polchok
Mrs. Kathryn Polster
Pomperaug Field Hockey
Estate of Evelyn T. Pontone
Mr. Gustav Popke
Larry N. & Juliane M. Port
Port Byron
Mr. Robert E. Porter
Pottash/Ferguson Family Foundation
Deborah A. Pouler
Mr. & Mrs. Ralph Powell
Mrs. Persephone W. Powell
Ms. Kathryin Powers
Jeffrey Poznick & Uila Swenson
Mr. & Mrs. Anthony C. Pratt
Trust of Hawley B. Pratt
Ms. Lois A. Pratt
Estate of Joyce Yvonne Presnick
Ms. Mona Preus
David & Erlene Price
Mrs. Ruth Priest
Wayne L. Prim Foundation
Ms. Ramona Pringle
Dr. William C. Pritchard
Proctor Academy
Mr. Brian Purcell
Mr. James L. Purcell
Ms. Colleen Putnam
PV Field Hockey Prents Association
QGA Public Affairs
Quinnipiac University
Radnor Girls Field Hockey
Page Rafferty
Mr. Manish Raghavan
Ms. Srilatha Raghavan
Mr. Greg P. Rainbolt
Ms. Tasmeen Rajan
Ms. Sundara M. Ramanan
Ramsey High School
Rappaport Management Company
Mr. John Rauth
Mr. Michael J. Ravin
Mrs. Katharine J. Rayner
Mr. Richard Reade
Recoup
Mr. Robert Redfield
Mr. & Mrs. John M. Reece
Mrs. & Mrs. Nora Lea Reeve
Reisterstown High School
Trust of A. L. & E. R. Repecka
Mr. Mark Reznick
The Ress Family Foundation
Mr. Andrew Revel
Mr. & Mrs. Donald R. Reynolds
Ms. June Reynolds
Ms. Katherine Reynolds
Mr. William E. Richardson
Mr. Mike Richer
Ms. Clare Richie
Mr. & Mrs. Alan Richstein
Estate of Eileen B. Riddick
Ridgewood Youth Field Hockey
Estate of June Ridinger
Estate of Samuel S. Rifman
Estate of Margaret L. Rigby
Mr. Kenneth Ringbloom
Ms. Gayle I. Rivera
Mr. James Rivera
Mr. Daniel Rivera-Gomez
Mr. & Mrs. Donald Roache
Ms. Lois M. Robertson
Mr. & Mrs. Alan Robinson
Mr. Edward W. Robinson
Ms. Mary A. Robinson
Rocky Point High School
M. Rodriguez
Mr. & Mrs. Stanley E. Roegner
Rome Free Academy
John C. Roode
Ms. Melissa Rose
Richard Rosen
Mr. Robert Roslowski
Howard Ross Family Foundation
Ms. Kathy Rossi
Ms. Phyllis S. Roth
Roth Family Foundation
Brenda & James Rouse
Seymore Rubin
Martha & Max Rubinstein Family Foundation
Rye High School
Mr. & Mrs. Timothy J. Sackech
Saint Anselm College
Mrs. Patricia Sakakura
Mr. Franklin Salazar
Salesforcem Foundation
Rayan Saliba Family
Mr. Franklin C. Salisbury, Jr.
Mr. & Mrs. Michael Sammis
Ms. A. Sue Samuels
Mr. & Mrs. Robert E. Sandell
Sandisk Corporation
Sandwich High School
Ms. Dorothy A. Sanford
Mr. Robert E. Sanson
Mr. John R. Sares
Ms. Melinda Sarli Wehrle
Ms. Barbara J. Sayre
Gary & Karen Schafer
Estate of Robert P. Scharamlern
Paul R. & Clee Schimmel
The Albert G. & Olive H. Schlink Foundation
Mr. & Mrs. James Schliendwein
Mr. Gary T. Schmalried
Ms. Stacey B. Schneider
Dr. & Mrs. Herbert Schneiderman
Mrs. Martha K. Schrader
Mr. Jim Schramm
Mrs. Susan Schrepper
Mr. James A. Schroeder
Mr. & Mrs. Howard Schuitema
Estate of Arthur W. Schultz
The Susan and Ford Schumann Foundation
Mrs. Phyllis Schwartz
Ms. Jan Scott
The Scott and Patric Brickman Family
Mr. John Sears
Mr. Ricardo Segura
Mr. Edward Seibert
Mrs. Phyllis T. Thompson
Margaret Selleck
Seneca High School
Mr. Ricky L. Sentzitz
Mr. & Mrs. David Sepplala-Holtzman
Sewanee: The University of the South
Steven Sewell
Mr. John H. Shackelford
Mr. David Shafarow
Mr. William Shaffer
Mr. Manish Shah
Shawnee High School
B. J. Shea
Ms. Suzanne Shellman
Daniel Sherman
Marjorie Sherman
Sherwood High School
Mrs. Mary Shell
Laurids C. Siedelmann
Estate of Sophia A. Siegel
Ms. Melissa Siegel
Mr. Joe Sileo
Mr. Robert Silverstein
Mrs. Morene L. Simon
Charles H. & Shirley B. Simpson Foundation
Mrs. Sharon Simpson
Coll. Paul N. Simi, Ret.
Mr. Gregory Sinatro
Ms. Karen S. Singer
Sadhana Singh
Mr. Thomas M. Sipkins
Mr. & Mrs. William Sipkins
Mr. Richard Skalski
Ms. Virginia J. Skeirik
Mr. Winfred G. Skelton, Jr.
Mr. Eugene R. Skora
Sanford & Doris Slavin Foundation, Inc.
Ms. Brenda Slawson
Ms. Beth Slazas
Mr. Michael Sloan
Barbara Sloyer
Mr. & Mrs. James R. Small
Mrs. Marilyn Smith
Mr. & Mrs. Bernard Smith
Bruce & Jannet Smith
Charles Henry Smith, Sr. Foundation
Mr. & Mrs. David Smith
Mr. Gordon G. Smith
Mr. Jarod Smith
John Smith
Mr. Michael Smith
Mrs. Phyllis V. Smith
William E. Snoedewen, DDS
Mrs. Nancy V. Snyder
Somers High School
Somerville High Girls Basketball
Mr. Keith Soo Hoo
Southampton Township Rec.
University of Southern Maine
Ms. Davida C. Sparks
Sparta High School
Reva Spaug
Betsy Sponsor
Sport Automotive Group
St. Stephen’s Episcopal School
Mr. Christopher Stacklin
Mr. Roy Stafford
Stafford High School
Vyann Stager
Ms. Anna Stanfield
Stamfords Community Foundation
Mr. John S. Stanovick
Mrs. Marie Stanton
Trust of Toby Starr
Mr. & Mrs. Joseph D. Stas
Mr. H. Elsworth Steele
Mrs. Elizabeth F. Steele
Ms. Nicole S. Steeck
Lyle I. Steinberg
Ms. Karen S. Steingraber
Mr. James Stephenson
Ms. Dorothy Stern
Ms. Lori Steuer
Paul Stevens
Stevenson University
Ms. Saralyn Stewart
Mr. & Mrs. Fred Stillman
Dr. Alden Stock
Michael & Sally Stoddard
Susan Stoddard
Mr. Jay Stolper
Mr. Scott Straka
Mr. Robert M. Strong
Mr. Andrew B. Struble
Gwen Stuckwisch
Ms. Polly K. Sturm
Suffern Blue
Suffield High School
Mr. Ronald Sugarman
Donna Sullivan
Ms. Joseph G. Sullivan
Mr. Will Sullivan
SUNY Oneonta
Suquehanna University
Mr. Scott Svidergol
Mr. Richard Stupak
Ms. Shawanna E. Swanson
Mr. Gregg Swartz
Mr. Robert A. Swenson
Synergine Therapeutics, Inc.
Tabeling Foundation, Inc.
Takeda Pharmaceuticals
Nelson S. Talbott Foundation
Mr. Patrick A. Tamburri
Tandem Products, Inc.
Mr. Michael Tansky
Mr. & Mrs. Paul Tarantino
Paul Tardif
Mr. Derek Tarnow
Mr. Foster Tate, Jr.
Mrs. Suzannne E. Taylor
Douglas W. & Lynn D. Taylor
Marlynn Taylor
Mrs. Nancy B. Taylor
Mr. Neil Taylor
Theresa & Gregory Borovikis
Ms. Margaret Thiele
Mr. Colin R. Thompson
Ms. Miyoko Thompson
Ms. Teresa A. Thompson
Mr. & Mrs. Charles W. Thomson
Thomson Reuters
Joan E. Thoron, M.D.
Anna Marie & John Thron
Thunder Birds Athletics Corp.
Tianjin Medical University Cancer Hospital and Institute
Marlene Tietjen
Ms. Maria Tillan-Rad & Mr. John M. Rud
Mr. & Mrs. Ronald R. Tisch
TM Associates Management, Inc.
Mr. & Mrs. Philip J. Tom
Mr. W. F. Touchstone, Jr.
Mr. Walter P. Townsend
Mr. & Mrs. John M. Train
Travelers Community Connections
Estate of Mary G. Troy
Trust, Inc.
Mr. Jordan Tschin
Includes all donors, foundations, corporations and institutions giving $500 or more between January 1, 2014 and December 31, 2014.

Mr. & Mrs. Robert C. Walrich
Mrs. Donna R. Wallace
Ms. Janet M. Walker
Ms. Camille E. Walker
Mr. Adam Walker
Mrs. Carol M. Waldron
Ms. Marie T. Wakerly
The Wagner Foundation
Mr. Roger F. Vorce
Mr. Curt Vondrasek
Dr. & Mrs. Daniel D. Von Hoff
Mr. Fred K. Von Hillebrandt
Ms. Janice Volkenant
VMware Foundation
Villa Maria Academy
Virginia Commonwealth University
Massey Cancer Center
VMware Foundation
Ms. Janice Volkenant
Mr. Fred K. Von Hillebrandt
Dr. & Mrs. Daniel D. Von Hoff
Mr. Curt Vondrasek
Mr. Roger F. Vorce
The Wagner Foundation
Wakefield High School
Ms. Marie T. Wakerly
Mrs. Carol M. Waldron
Marguerite A. Walke
Mr. Adam Walker
Ms. Camille E. Walker
Ms. Janet M. Walker
Mrs. Donna R. Wallace
Mr. & Mrs. Robert C. Walrich
Wheaton College
Wheaton High School
Mrs. Lori Whelan
Edith M. White
Mr. Darryl White
Mr. David S. White
Mr. Mark R. White
Mr. Byrne Whitehead, Jr.
Mrs. Sharon R. Whitehouse
Whiting Foundation
Mr. Bruce H. Whitson
Ms. Nicole Wilberg
Paul W. Wilderson, III
Mr. Byron Williams
Mrs. Joanna F. Williams
Linda Williams
Ms. Tammy Williams
Clemmie A. & Joyce Willis
Williston Northampton School
Mr. Lucas Wilson
Wilton High School
Wilton Recreation Field Hockey
Mr. Howard Winters
Wiss, Janey, Elstner Assoc., Inc.
Ms. Phyllis Witman
Estate of Henry Witte
Dr. Joel Winters
Curtis Woodhead & Susan Rossetti
Ms. Marie Cartinhour Woods
Dr. Twanna Woodson
Woodstock Academy
Mr. Larry Woody
Ms. Esther Woollis
Mr. & Mrs. Steve Wrench
Mr. Mark Wright
Mr. Edmund H. Wu
Wyoming Valley West High School
Mr. Frank E. Xavier
Mr. Daniel S. Yacker
Mr. Zaher Yaqubie
Mr. Franklin Yee
Mrs. Pat Yee
Mr. Mark Yen
Ryong Yi
Mrs. Elaine G. Yost
Mr. Bill Young
Mr. & Mrs. Ernest Young
Gregory S. Young
Lamont & Dana Youngborg
Mr. Kenny Yu
Dr. Charles M. Zacharias
Mr. Thomas J. Zarillo
Ms. Mary Z. Zemon
Mr. Suiyuan Zhang & Ms. Sumin Ba
Mr. Dennis Zhou
Mr. Edward Zilcoski
Mrs. Judith A. Zimmermann
Hanna Ziolekowska
Debbie G. & Steven M. Zuckerman
Robert M. Zuvich

Includes all qualifying Legacy Society members between January 1, 2014 and December 31, 2014.

LEGACY SOCIETY DONORS

The Legacy society recognizes donors who have chosen to create a substantial legacy in cancer research by leaving a gift to NFCR through their estate, or by utilizing other planned gift vehicles to support NFCR’s cancer research. We are grateful to these donors for their dedication and foresight and are proud to recognize them through membership in the NFCR Legacy Society.

Anonymous (23)
Mr. & Mrs. Lyle M. Adams
Mr. & Mrs. Terry E. Albrecht
Ms. Linda Appel
Ms. Gloria Barry
Sujuan Ba, Ph.D.
Mrs. Cordelia Bennett
Roger A. & Maria D. Berube
Ms. Christina Billiard
Mr. Jack Bollinger
Mr. David T. Bonney
Mr. Moses Bradford, Jr.
Mr. Ronald L. Brough
Ms. Maryann A. Burkich
Mrs. Deborah Caballero
Ms. Thelma D. Cabaniss
Rev. Robert J. Carlson
Ms. Alyssa H. Chantakhousy
Ms. Andrea Chaiklin
Linda L. Clark
Mr. Steve Clatter
Mr. John P. Cowden
Ms. Connie S. Cunningham
Jane Ann Curto
Mr. Jose Davila
Mr. Nicholas DeCurtis
Mrs. Teresa Dukett
Mrs. Dorothy Evans
Mr. David J. Fredericson
Ms. April C. Garry
Ms. Louise R. Geretti
Mr. & Mrs. Dean Gettemy
Ms. Sydelle Goldwurm
Mrs. Deborah Goodwin
Mr. & Mrs. Gregson Gutkowski
Ms. Patricia Hale
Mrs. Marta Hall
Miss Barbara Hammond
Mr. & Mrs. Herbert L. Harger
Edwin F. & Noriyro Hahwuhurt
Ms. Treva Hobson
Ms. Kathleen Hofmann
Mrs. Marie D. Hutchinson
Ms. Bette Israel
Sree Kaimal, Ph.D.
Mrs. Yvonne M. Ken
Mr. Charles W. Kent
Ms. Barbara Kirsh
Mr. & Mrs. Robert Koch
Ms. Jody Knosw
Ms. Harriet LaClare & Mr. Don Mills
Mr. & Mrs. Billy B. Lawrence
Mrs. Madeline Lester
Mr. John R. Limpus
Ms. Elana Lippa
Mr. Joseph L. Lishoa
Mr. Richard Haughton Livesey, III & Mrs. Mae F. Livesey
Ms. Mary C. Majewski
Mr. & Mrs. Irene Marxewel
Mr. Earl McKinley
Mrs. Barbara Marie Miller
Mr. Eric Misted
Ms. Mary Elizabeth Moore
Linda Nedelman, Ph.D.
Mr. & Mrs. James R. Nolan
Mrs. Ruby D. Norwood
Mrs. Ruth H. O’Dea
Mrs. Charlotte S. Olsen
Mr. Albert Ottinger
Mr. Joseph Parham, Jr.
Mr. & Mrs. Francis Plumb
Ms. Debra Putman
Ms. Janet Robbins
Mrs. Janice M. Roof
Mr. Stephen C. Ross
Mrs. Sandra C. Rowe
Mr. & Mrs. John L. Rust
Mr. Franklin C. Salisbury, Jr.
Mr. & Mrs. Craig Schaus
Dr. David P. Sickles
Mr. & Mrs. Douglas R. Snowden
Mrs. Margot I. Sparling
Mr. Isaac R. Suarez
Mrs. Sonia E. Supple
Mr. Roy L. Tankesley
Ms. Lynn N. Traung
Ms. Trudy Ullman
Mr. & Mrs. Fred Underlethe
Mr. Charles Uphoff
Mr. Charles Urban
Dr. & Mrs. Daniel D. Von Hoff
Ms. Mildred Wald
Ms. Ruth Walters
Ms. Deborah Weiss
Ms. Marilyn Wewerka
Ms. Leonilla Zobs

Includes all qualifying Legacy Society members between January 1, 2014 and December 31, 2014.
REPORT OF INDEPENDENT AUDITORS

Board of Directors
National Foundation for Cancer Research, Inc.

Report on the Financial Statements

We have audited the accompanying consolidated financial statements of National Foundation for Cancer Research, Inc. and affiliates, which comprise the consolidated statements of financial position as of December 31, 2014 and 2013 and the related consolidated statements of activities, functional expenses and cash flows for the years then ended, and the related notes to the consolidated financial statements.

Management's Responsibility for the Financial Statements

Management is responsible for the preparation and fair presentation of these consolidated financial statements in accordance with accounting principles generally accepted in the United States of America; this includes the design, implementation, and maintenance of internal control relevant to the preparation and fair presentation of consolidated financial statements that are free from material misstatement, whether due to fraud or error.

Auditor's Responsibility

Our responsibility is to express an opinion on these consolidated financial statements based on our audits. We conducted our audits in accordance with auditing standards generally accepted in the United States of America. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the consolidated financial statements are free from material misstatement.

An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the consolidated financial statements. The procedures selected depend on the auditor's judgment, including the assessment of the risks of material misstatement of the consolidated financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the entity's preparation and fair presentation of the consolidated financial statements in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the entity's internal control. Accordingly, we express no such opinion. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of significant accounting estimates made by management, as well as evaluating the overall presentation of the consolidated financial statements.

We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion.
Opinion

In our opinion, the consolidated financial statements referred to above present fairly, in all material respects, the financial position of National Foundation for Cancer Research, Inc. and affiliates as of December 31, 2014 and 2013, and the changes in its net assets and its cash flows for the years then ended in accordance with accounting principles generally accepted in the United States of America.

[Signature]

A Professional Corporation
Bethesda, MD
April 30, 2015
National Foundation for Cancer Research, Inc.
Consolidated Statements of Financial Position
December 31, 2014 and 2013

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>$3,709,632</td>
<td>$2,530,048</td>
</tr>
<tr>
<td>Accounts receivable</td>
<td>169,251</td>
<td>217,886</td>
</tr>
<tr>
<td>Prepaid expenses and other assets</td>
<td>452,366</td>
<td>434,264</td>
</tr>
<tr>
<td>Furniture and equipment, net of accumulated depreciation and amortization</td>
<td>56,403</td>
<td>65,818</td>
</tr>
<tr>
<td>Investments</td>
<td>7,733,455</td>
<td>7,607,069</td>
</tr>
<tr>
<td>Amounts held in trust by others</td>
<td>2,534,921</td>
<td>2,094,033</td>
</tr>
<tr>
<td>TOTAL ASSETS</td>
<td>$14,656,028</td>
<td>$12,949,118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIABILITIES AND NET ASSETS</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts payable</td>
<td>$922,173</td>
<td>$749,694</td>
</tr>
<tr>
<td>Research contracts and grants payable</td>
<td>2,091,986</td>
<td>1,608,286</td>
</tr>
<tr>
<td>Accrued compensation and benefits</td>
<td>123,429</td>
<td>124,742</td>
</tr>
<tr>
<td>TOTAL LIABILITIES</td>
<td>3,137,588</td>
<td>2,482,722</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NET ASSETS</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted</td>
<td>4,394,430</td>
<td>4,538,016</td>
</tr>
<tr>
<td>Designated for research</td>
<td>3,543,743</td>
<td>2,641,231</td>
</tr>
<tr>
<td>Undesignated</td>
<td>7,938,173</td>
<td>7,179,247</td>
</tr>
<tr>
<td>Temporarily restricted</td>
<td>1,469,940</td>
<td>1,591,402</td>
</tr>
<tr>
<td>Permanently restricted</td>
<td>2,110,327</td>
<td>1,695,747</td>
</tr>
<tr>
<td>TOTAL NET ASSETS</td>
<td>11,518,440</td>
<td>10,466,396</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL LIABILITIES AND NET ASSETS</th>
<th>2014</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$14,656,028</td>
<td>$12,949,118</td>
</tr>
</tbody>
</table>

See Notes to Consolidated Financial Statements
NATIONAL FOUNDATION FOR CANCER RESEARCH, INC.
CONSORTIATE STATEMENTS OF ACTIVITIES
FOR THE YEARS ENDED DECEMBER 31, 2014 AND 2013

REVENUE AND SUPPORT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public support</td>
<td>$10,688,367</td>
<td>$300,441</td>
<td>$-</td>
<td>$10,988,808</td>
<td>$11,320,114</td>
<td>$278,514</td>
<td>$-</td>
<td>$11,598,628</td>
</tr>
<tr>
<td>Bequests</td>
<td>2,481,734</td>
<td>-</td>
<td>298,654</td>
<td>2,750,388</td>
<td>1,159,889</td>
<td>-</td>
<td>-</td>
<td>1,159,889</td>
</tr>
<tr>
<td>Mailing list rental</td>
<td>370,997</td>
<td>-</td>
<td>370,997</td>
<td>327,562</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>327,562</td>
</tr>
<tr>
<td>Investment income</td>
<td>279,266</td>
<td>-</td>
<td>-</td>
<td>279,266</td>
<td>604,370</td>
<td>-</td>
<td>-</td>
<td>604,370</td>
</tr>
<tr>
<td>Change in value of split-interest agreements</td>
<td>(20,537)</td>
<td>26,306</td>
<td>115,926</td>
<td>121,695</td>
<td>(19,133)</td>
<td>47,027</td>
<td>123,852</td>
<td>151,746</td>
</tr>
<tr>
<td>Other revenue</td>
<td>75,955</td>
<td>-</td>
<td>-</td>
<td>75,955</td>
<td>60,814</td>
<td>-</td>
<td>-</td>
<td>60,814</td>
</tr>
<tr>
<td>Non-cash research support</td>
<td>1,510,916</td>
<td>-</td>
<td>-</td>
<td>1,510,916</td>
<td>849,039</td>
<td>-</td>
<td>-</td>
<td>849,039</td>
</tr>
<tr>
<td>Net assets released from restrictions</td>
<td>448,209</td>
<td>(448,209)</td>
<td>-</td>
<td>-</td>
<td>576,905</td>
<td>(576,905)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL REVENUE AND SUPPORT</td>
<td>15,834,907</td>
<td>(121,462)</td>
<td>414,580</td>
<td>16,128,025</td>
<td>14,879,560</td>
<td>(251,364)</td>
<td>123,852</td>
<td>14,752,048</td>
</tr>
</tbody>
</table>

EXPENSES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>5,613,499</td>
<td>-</td>
<td>-</td>
<td>5,613,499</td>
<td>5,026,830</td>
<td>-</td>
<td>-</td>
<td>5,026,830</td>
</tr>
<tr>
<td>Public education and information</td>
<td>5,767,573</td>
<td>-</td>
<td>-</td>
<td>5,767,573</td>
<td>5,809,318</td>
<td>-</td>
<td>-</td>
<td>5,809,318</td>
</tr>
<tr>
<td>Supporting services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundraising</td>
<td>2,805,853</td>
<td>-</td>
<td>-</td>
<td>2,805,853</td>
<td>2,685,574</td>
<td>-</td>
<td>-</td>
<td>2,685,574</td>
</tr>
<tr>
<td>Management and general</td>
<td>889,056</td>
<td>-</td>
<td>-</td>
<td>889,056</td>
<td>790,641</td>
<td>-</td>
<td>-</td>
<td>790,641</td>
</tr>
<tr>
<td>TOTAL EXPENSES</td>
<td>15,075,981</td>
<td>-</td>
<td>-</td>
<td>15,075,981</td>
<td>14,312,363</td>
<td>-</td>
<td>-</td>
<td>14,312,363</td>
</tr>
</tbody>
</table>

EFFECT OF DECONSOLIDATION

CHANGE IN NET ASSETS	758,926	(121,462)	414,580	1,052,044	220,475	(251,364)	123,852	92,963
NET ASSETS AT BEGINNING OF YEAR	7,179,247	1,591,402	1,695,747	10,466,396	6,958,772	1,842,766	1,571,895	10,373,433
NET ASSETS AT END OF YEAR	$7,938,173	$1,469,940	$2,110,327	$11,518,440	$7,179,247	$1,591,402	$1,695,747	$10,466,396

See Notes to Consolidated Financial Statements
NFCR BOARD OF DIRECTORS

CHAIRMAN
Joseph F. Franlin
Co-Founder
Neustar, Inc.
Pennsylvania

Michael J. Burke, CPA
Managing Partner
York, Burke & Lee
Maryland

Padminakumar Kaimal, Ph.D.
Vice-President
Technology Alliance & Business Development
Suven Life Sciences
New Jersey

TREASURER
Mark R. Baran
Managing Director
Four Springs Capital, LLC
New Jersey

Judith P. Barnhard, CPA
Partner
May & Barnhard, PC
Maryland

NFCR BOARD OF ADVISORS

Abraham Amoros
Chief of Communications
Office of the Governor
Pennsylvania

Marianne Bouldin
Co-Founder
Hope Fund for Sarcoma Research

Nancy Flood Cole
Special Events Consultant

Allan Ettinger
Senior Vice President — Wealth Management
Senior Investment Management Consultant
Morgan Stanley Smith Barney

Sarah Funt
Realtor
Long & Foster Realtors

Ken Hansen
Senior Director
Registry Services, Business Development
Neustar, Inc.

Richard Mallery, Esq.
Managing Partner
Snell & Wilner, LLC

Mary Ann Miller
NFCR Supporter

Stephen Minar
Vice President
BlackRock

William Potter
President
Robert R. Meredith, Inc.
New York

Sarah Funt
Realtor
Long & Foster Realtors

Anne Rouse
NFCR Volunteer

Melissa Siegel
Philanthropist and Community Activist

David M. Sotsky
Financial Advisor
Merrill Lynch

John Stanovick
Mathematical Statistician
United States Department of Agriculture — Forest Service

Anne Rouse
NFCR Volunteer

Melissa Siegel
Philanthropist and Community Activist

David M. Sotsky
Financial Advisor
Merrill Lynch

John Stanovick
Mathematical Statistician
United States Department of Agriculture — Forest Service

Brian Vogel
Associate Vice President, Client Advisor
Bessemer Trust